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As used here, the term *net” denotes a system of flexible filaments directed along two 

one-parameter families of lines on a surface. Kinematic analysis of a net as a discrete rod 

system testifies to its multiple geometrical variability regardless of the conditions of 

attachment on the contour. However, the kinematic mobility of variable rod systems for some 

relationship among the geometrical parameters is limited to infinitesimal displacements. 

Such systems with specially selected geometrical parameters were first investigated by 

Rabinovich [l], who called them ‘instantaneously rigid” systems [Z, 31. With this approach, 

it is convenient to substitute tbe following static criterion for the kinematic criterion of an 

instantaneously rigid system formulated in [l] aud stated above: a variable system that 

sllows initial stresses is instantaneously rigid if its equilibrium is stable in the prelimi- 
nary state of stress. 

1. In order to derive the equilibrium conditions, let us consider an infinitely small 

element of the net in the neighborhood of oneof its nodes (see accompanying figure). .Ihis 

element is bounded by the coordinate lines u and 

v which we direct along the two families of fila- 

ments; the triple of unit coordinate vectors t, , 

t,, n forms a movable trihedron on the surface. In 

the absence of an external stress, the equilibrium 

condition for the isolated net element is of the 

form 

where 

are stress vectors in the filaments referred, respectively, to the unit increments of the 

linear elements 

ds, = Bdu = 1, ds, = z.Idu==-l 

We denote the Lam6 parameters by A and B. Condition (1.1) applies to the deformed 

state of the system, when the filaments can be assumed inextensible. 

654 



lnr tuntuneausly rigid nets 655 

Carrytng out the differentiation in (1.1) with the aid of Cauas’ derivation formnlas 

[4] and dividing through by dvdw, we bave (1.2) 

1, ,, $ t, + T, @,n - &) + T,& + T,,, f W-Tn@,n 
4 

T - Ga)+Tdn~B = 0 

where u and x are the normal and geodetic curvatures of the filaments, and b is the unit 

vector along the binormal. 

Equilibrium equation (1.2) has been obtainedin a special coordinate system; from now 

on, however, it will be more convenient to make use of the invariant expression for this 

equation 

T, iuit, + T1 (aln - Xlb,) ~ T,t,AiUi + T,,iu’t, + 

+ T, (u,n - x,b,) + T,t,Api = 0 (i = i, 2) (1.3) 

where ai and vi are the direction unit vectors of the net lines, and Ai is the so-called 

rhombic vector of the net which is determined unambiguously by any net [S]. 

The validity of notation (1.3) may be verified by substituting in the values assumed 

by the components of the vectors ui, ui and Ai in the special coordinate system, 

ui (f , 0)) Vi (0, $) , Ai (- $ , -%) (1.4) 

Clearly, this substitution leads to condition (1.2); in keeping with the tensor charac- 

ter of equation (1.3), this guarantees the validity of the latter in an arbitrary coordinate 

system. 

2. Scalar multiplicationof equation (1.3) by b,, b, and n leads to a system of three 

equations that express the equilibrium conditions as projections on the corresponding axes, 

(T,,i - T,Ai) u* sin o - T,x, cos o f- T+, = 0 

(T,,i - T&J vi sin o + Tzxa cos o - T,x, = 0 (2.1) 

T,a, + T,u, = 0 

where ok is the angle between the directional unit vectors of the net (the net angle). 

Definition. A net for which the system of equilibrium equations (2.1) permits of a non- 

zero solution will be referred to as a static net. 

From the third equation of system (2.1) we see that if the curvatures uI and O, are of 

the same sign, the stresses T, and T, are of different signs, and vice versa; the case 

where both curvatures are simultaneously equal to zero must be considered aeparately. But 

the equilibrium of the net is stable only if T, and T, are both tensile stresses. Hence, only 

those static nets which lie on surfacesof negative Gaussian curvature whose normals of 

filament curvature are of opposite sign at each point may be considered instantaneously 

rigid nets. 

Before excluding the case tag = 0, = 0 we note that this condition characterizes the , 

asymptotic net of the surface, as well as an arbitrary plane net. The last equation of (2.1) 

is satisfied identically, while the first two form a canonical hyperbolic system whose 

characteristics coincide with the directionsof the filaments, i.e. with the asymptotic lines 
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on the surface. The Cauchy problem (specifically, the characteristic problem) for this sys- 

tem has a solution in the regular domain of the net which is completely determined once the 

stresses T, and T, are specified along some initial line (or along two intersecting charac- 

teristics, respectively). Since these stresses can both be made positive, the asymptotic 

net is an instantaneously rigid net at least locally. 

3. We introduce the resolving function T of system (2.1) in terms of the formulas 

T, = TO,, T, = Tal 

The third equationis then satisfied identically, and the first two can be combined into 

a single vector equation 

‘pli G ak In T = A, - E (XlUk + w,) - (3.2) 

1 -__ 
sin o ( 

‘1.i i 

(J1 ’ uk Xnvk + 2 %t”k) (a, = 5) 

by minor manipulations. 

The discriminant bivector aik -= uiz’k - ukr’i is used here as a vector for permuting the 

subscripts [51. 

The structureof the expression on the right-hand side of equation (3.2) enables us to 

say that it represents some vector ‘Fk belonging to the surface; this vector is determined 

unambiguously by the given net. 

Definition. The vector g?k whose components are given by the right-hand side of equa- 

tion (3.2) is called the static vector of the net. 

Theorem 3.1. In order for a net to be static, it is necessary and sufficient that its 

static vector be gradient. 

In fact, since the gradient vector 6, In T appears on the left-hand side of equation 

(3.21, it is quite clear that this equation, as well as system (2.1) permitsof anon-trivial solu- 

tion if and only if the vector (Fk is also gradient, i.e. if the condition 

is satisfied. 

curl q - 0 (3.3) 

This is the necessary and sufficient condition for the existence of a function q such 

that ‘pk = ak’p. We call the function d the static potential of the net; by (3.2) the quantity 

required 

T = Cew (3.41 

The invariant criterion of an instantaneously rigid net therefore consists of condition 

(3.3) imposed on the static vector in combination with the foregoing condition as regards the 

opposite signs of the normal curvatures. 

If a given net is taken as the coordinate net, then regardlessof the parametrization 

established thereon, the characteristic condition (3.3) assumes the form 
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(3.5) 

where, rijk are Christoffel symbols, and L and N are the extreme coefficients of the 

second quadratic form of the surface. 

4. The problem of the existence and number of static netson any surface may be for- 

mulated as follows: Is it possible to choose a second one-parameter family of lines for a 

given one-parameter family in such a way as to obtain a static net? 

Let ni be the direction unit vector of the first family; we will consider the unit vector 

ur of the second family as the unit vector ur rotated by some angle w in such a way that 

ui = ui cos 0 + ur* sin (u 
(4.1) 

where a’i is the complement of the vector uL. 

The geodetic and normal curvatures of the second-family lines are expressed in terms 

of the invariants of the lines of the given family and the net angle w; henceforth we will 

need only those terms of these expressions which contain derivatives of the function 

xz=vio*+..., U*,i = [22, COS 20 - (~1 - ul* ) sin 2wJ c+ + . . . (4.2) 

where r is the geodetic torsion and the ellipsis denotes terms not containing derivatives 

of 0 . 

We introduce the values of (4.2) into static vector formula (3.2) and then require that 

this vector be gradient by setting its curl equal to zero. The resulting expression consti- 

tutes a second-order differential equation in o ; the leading portionof this equation (i.e. the 

terms containing second derivatives) may be reduced to 

(4.3) 

& [$niuk - 2 (or cos 0 + r1 sin 0) ufivk) + ctt+nk] @ik + . . . = hfkaik + . . .=o 

where h ik is the second tensor of the surface. 

The discriminant of equation (4.3) is 

6 = det 1 hik 1 = K / g (4.4) 

Since the quantity g (the discriminant of the metric tensor) is definitely positive, the sign 

of expression (4.4), and therefore the type of equation (4.3) are determined by the sign of the 

Gaussian curvature of the surface K. ,In addition, knowledge of the second surface tensor 

hik permits us immediately to specify the characteristics of equation (4.3) and the coordi- 

nate system in which it assumes the canonical form. 

With the aid of the basic theorems of the general theory of differential equations, the 

result obtained cau be formulated in the form of the following statement: any one-parameter 

family of lines can be combined with a second family with a degree of arbitrariness to 

within two functionsof one argument in such a way that the resulting net is static. 

5. We begin our consideration of special forms of static nets with the case of the 
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orthogonal net (0 = 3/ln 1. 

The rhombic vector of the orthogonal net Ak is equal to its Tchebyshev vector a k’ 

A, = ak = XIUk + lIzlJh. (5.1) 

Hence, the static vector of the orthogonal net 

‘2.i i ‘1.i 
(pk= -uuk--uiuk+2H 

x2 

02 *1 
-2 Uk + - Vk 
01 (J2 (5.2) 

(H = liz(G + 02) is the average surface curvature) 

The orthogonal staticnet will be sought as the result of rotating thenet of curvature 

lines by an unknown angle 6. 

By means of operations completely similar to those carriedout in Section 4, we arrive 

at a second-order equation in the function $; the leading portion of this equation is of the 

form 

H [u,uV - 2r,t~(%~) + CJ+~] qik + . . . -= Hhik&, + . . . =-= 0 
(5.3) 

Disregarding the case H = 0 for the moment, we may assume that orthogonal static nets 

exist on any surface and are determined with a degreeof arbitrariness to within two func- 

tions of one argument. 

As regards the case H = 0 (minimal surface), we have 

iJ1 = - o2 = 0 

and the static vector 

‘i 
‘pk = 0 (uiuk - u,$) = - ak In CJ = grad 

for an arbitrary orthogonal net. 

Hence, 
T=Ce’-C//a 

(5.4) 

(5.5) 

(5.6) 

We thus arrive at the following theorem. 

Theorem 5.1. An arbitrary orthogonal net of minimal surface is an instantaneously 

rigid net. 

Another orthogonal net to consider is the net of curvature linesof an arbitrary surface. 

In this case, after a number of manipulations the staticvector reduces to the form 

(Pk = 2 
( 

$ Xal+ + -$ xlUk) = /( a In y + $- pkiai’ln -$ = 2ak* (5.7) 

whoraE= W-K is the Euler difference, p: is the fourth surface tensor, and ak* is 

the geodetic vector of the net of curvature lines relative to the asymptotic net. 

Definition. A surface whose net of curvature lines is static is called a static surface. 

Theorem 5.2. If the net of curvature lines of some surface is isothermal in the spherical 

representation, the surface is static; the static potential of its net of curvature lines is 

equal to twice the potential of the Tchebyshev vector of this set in the spherical represen- 

tation, 
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v = 2P (5.8) 

The validity of this statement follows directly from Norden’s familiar theorem on 

conjugate connectivities [S] according to which the vector ak* is equal to the Tchebyshev 

vector pk of the spherical representation of the net of curvature lines. Since the spherical 

representationof the net of curvature lines is an orthogonal net, the gradient of its 

Tchebyshev vector pk = 6k p implies that the net is isothermal. 

It may be verified directly that static surfaces include, specifically, surfaces of rota- 

tion (the static potential is 9 = -1n sin’8, where 8 is the angle between the normal to the 

surface and the axis of rotation), minimal surfaces (static potential: cp = -KInI K 1 1, 

second-order surfaces (cp = %(%ln ( K ) -1n E 1, and finally, surfaces with two families 

of plane curvature lines (whose spherical representations are the isothermal nets of 

Bonnet [s] ). For K < 0 the nets of curvature lines of the foregoing surfaces are instan- 

taneously rigid. 

6. Let us now consider the arbitrary conjugate net of a surface. Taking into account 

the familiar relations among the linesof a conjugate net, the static vector of the latter may 

be expressed as 

where ai is the geodetic vector of the net, a; is its metrically normalized tensor, and ck{ 

is the metrically normalized tensor of the bisector net. 

For the orthogonal conjugate net, i.e. for the set of curvature lines, expression (6.1) 

predictably becomes expression (5.7). 

Vanishing of the geodetic vector, as we know, characterizes the geodetic net of the 

surface. Recalling that the normal curvatures of the conjugate directions are of opposite 

sign for K < 0, we infer from (6.1) the following theorem for a conjugate geodetic net (FOSS 

net). 

Theorem 6.1. A Foss net on a Foss snrfaceof negative Gaussian curvature is an instan- 

taneously rigid net; the static potential of the net is 9 = - ln sin 61. 

1. 

2. 
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